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Abstract: 

Whereas, traditionally, business processes use the Internet of Things (IoTs) as a distributed source of information, the 

increase of computational capabilities of IoT devices provides them with the means to also execute parts of the business 

logic, reducing the amount of exchanged data and central processing. Current approaches based on Business Process 

Model and Notation (BPMN) already support modelers to define both business processes and IoT devices behavior at 

the same level of abstraction. However, they are not restricted to standard BPMN elements and they generate IoT 

device specific low-level code. The work we present in this paper exclusivelly uses standard BPMN to define central as 

well as IoT behavior of business processes. In addition, the BPMN that defines the IoT behavior is translated to a 

neutral-platform programming code. The deployment and execution environments use Web services to support the 

communication between the process execution engine and IoT devices. 
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1. Introduction 

In the last years, organizations have been using more and more business processes to capture, manage, and optimize 

their activities. A business process is a collection of inter-related events, activities, and decisions points that involve 

actors and resources and that collectively lead to an outcome that is of value for an organization or a customer [1]. In 

areas such as supply chain management, intelligent transport systems, domotics, or remote healthcare [2], business 

processes can gain a competitive edge by using the information and functionalities provided by Internet of Things 

(IoTs) devices. The IoT is a global infrastructure that interconnects things (physical and virtual). IoT devices connects 

things with communication networks. These devices can also have capabilities of sensing, actuation, data capture, data 

storage, and data processing [3]. 

Business processes can use IoT information to incorporate real world data, to take informed decisions, optimize their 

execution, and adapt itself to context changes [4].  Moreover, the increase in processing power of IoT devices enables 

them to become active participants by executing parts of the business logic: IoT devices can aggregate and filter data, 

and make decisions locally, by executing parts of the business logic whenever central control is not required, reducing 

both the amount of exchanged data and of central processing [5]. Indeed, sensors and actuators can be combined to 

implement local flows, without needing central coordination. 

However, decentralizing business processes into IoT devices presents two main challenges. First, IoT devices are 

heterogeneous by nature. They differ in terms of communication protocols, interaction paradigms, and computing and 

storage power. In addition, business modelers define processes using high-level languages (such as Business Process 

Model and Notation version 2.0 [6], henceforth simply referred as BPMN), as they must know the domain, but do not 

need to have specific knowledge to program IoT devices, nor want to deal with their heterogeneity. Therefore, this 

decentralization requires design as well as execution time support. 

At design time, current approaches allow modelers to define both business processes and IoT devices behavior at the 

same level of abstraction, using, for instance, BPMN-based approaches [7], [8], [9], [10], [11], [12]. BPMN already 

provides the concepts to define the behavior of various participants, by using different pools. The interaction amongst 

participants is specified through collaboration diagrams. Supporting the execution of these hybrid processes requires 

bridging the gap between high-level BPMN and the programming code that IoT devices can execute. These approaches 

use a three-step procedure: (1) translation of the process model to a neutral intermediate language; (2) translation of the 

intermediate code to a platform specific executable code; and (3) deployment of the executable code into IoT devices. 

By taking advantage of these approaches, business modelers can define both business processes and IoT behavior at the 

same (high) level of abstraction. However, they still use non-standard BPMN to integrate, for instance, IoT device 

information into business processes and they generate IoT device specific code, so that it must be generated again for 

each different IoT device. 

The proposal we present in this paper only uses standard BPMN to define both central and IoT behavior of business 

processes. Besides using pools and collaboration diagrams, we use the BPMN resource class to integrate the 

information about IoT devices into the model, and we use the BPMN performer class to define the IoT devices that will 

be participants of the process. In addition, the BPMN that defines the IoT behavior is translated into Callas bytecode 

[13].  We use the Callas sensor programming language as an alternative to the target platform-specific languages taken 

by previous proposals, since it can be executed in every IoT device for which there is a Callas virtual machine available. 

This way, we abstract hardware specificities and make executable code portable among IoT devices from different 

manufacturers. Business process and IoT devices communicate via web services (directly or indirectly through 

gateways). In addition, Callas also supports remote IoT devices reprogramming, a feature that is the first step to support 

ad-hoc changes [14] in the parts of business processes that define IoT behavior. A preliminary version of this work can 

be found elsewhere [15].  
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This paper is organized as follows. Section 2 presents the related work. Our proposal is described in the following two 

sections: whereas section 3 describes how we support modelling IoT behavior within BPMN business processes, section 

4 focuses on the implementation aspects, including the description of the translation procedure into Callas source code, 

and the overview of the deployment and execution phases. Finally, section 5 concludes the paper and hints for future 

work directions. 

2. Background  

Business modelers define business processes with languages such as Web Services Business Process Execution 

Language (WS-BPEL) [16] or BPMN, which use an abstraction level closer to the domain being specified. At this level, 

modelers should not deal with IoT devices heterogeneity and specificities: IoT devices use different operating systems 

(e.g., TinyOS, Contiki [17]), different programming languages (e.g., nesC [18], Protothreads), and different 

communication protocols. Traditionally, web services are used to provide IoT information and functionalities, 

abstracting and encapsulating low-level details. This way, web services are the glue between IoT and business 

processes, as model languages already support their usage. In addition, more recent approaches take a step forward by 

supporting IoT behavior definition within the business process [19], [20]. 

2.1 IoT as web services – the centralized approach 

Current IoT technology exposes IoT information and functionalities as web services, facilitating interoperability and 

encapsulating heterogeneity and specificities of IoT devices. Zen, Guo, and Cheng survey two approaches to implement 

IoT web services [21].  Some works provide web services directly in IoT devices: they simplify, adapt, and optimize 

Service-Oriented Architecture (SOA) tools and standards to deal with the well-known limitations of resource-

constrained devices. Other approaches provide web services indirectly through middleware systems. This way, IoT 

devices that do not support web services can still be accessed.  

Taking a step forward on integrating IoT into business processes, some authors propose the explicit integration of IoT 

concepts into business process models. Domingos et al. [22], [23] and George and Ward [24] extend WS-BPEL with 

context variables to monitor IoT information, abstracting the set of operations to interact with IoT devices. The IoT-A 

project proposes some BPMN extensions to explicitly include IoT devices and their services in an IoT-aware process 

model, as well as some characteristics of IoT devices, such as uncertainty and availability [25], [26]. The uBPMN 

project adds ubiquitous elements to BPMN: it defines the BPMN Task extension for Sensor, Reader, Collector, Camera, 

and Microphone, as well as an IoT-driven Data Object to represent the data transmitted from IoT devices [27], [28]. 

GWELS [29] provides a graphical user interface to design IoT processes and send them automatically to IoT devices as 

a sequence of operation calls that have been uploaded to IoT devices in advance. It uses proprietary communication 

protocols to interact with IoT devices. IoT processes are provided as web services and, in this way, can also be 

integrated into business processes. 

The above approaches assume a centralized control of the process execution, where a single central system executes and 

coordinates processes and communicates with IoT devices using web services. However, business modelers are unable 

to define the behavior of IoT devices, they can only use services whose behavior is previously defined. 

2.2 IoT as active participants of business processes – a decentralized approach 

In a decentralized approach, IoT devices can work together to execute parts of business processes, reducing the number 

of exchanged messages and promoting the scalability of central process engines, since information is processed locally. 

Another important advantage, present in many scenarios, is that the lower network traffic between the central engine 

and IoT devices improves battery lifetime of IoT devices. To model business processes according to this decentralized 

approach, business modelers need a unified framework where they can specify the behavior of IoT devices as well as 
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their interactions with the central system. BPMN already provides the concepts to define the behavior of various 

participants by using different pools; their interactions are specified through collaboration diagrams. 

Following a decentralized approach, Caracas and Bernauer [7], [8], [9] use standard BPMN to model both central and 

IoT behavior. However, IoT device information is integrated to the BPMN model in a non-standard way, by appending 

it to the pool name or with additional attributes added to the pool element. They translate the BPMN that defines the 

IoT behavior to target IoT device specific code. The authors state that the sensor code they generate does not perform 

much worse than hand-written code.  

Casati et al. [10] propose the makeSense framework. They extend BPMN with attributes to support the new intra-WSN 

participant, which contains the part of the process that IoT devices will execute. To model IoT behavior, makeSense 

uses a second meta model [10], [30], [12]. The translation procedure into executable code for IoT device uses two 

models: the application capability model has information about available sensors and actuators and their operations, 

while the system capability model has additional information about the target IoT devices, which is used to generate 

different code based on IoT device capabilities. MakeSense uses its own message format and transmission encoding to 

support the communication between the central process engine and IoT devices [12]. 

Whereas in these two proposals, IoT devices execute device specific code, Pryss et al. [31] follow a different approach 

by executing process engines in IoT devices. Despite the advantage of avoiding generating the executable code for IoT 

devices, this option is only applicable for IoT devices with higher computational capabilities. 

In our work, we exclusivelly use standard BPMN to define all the business process, and IoT device information is added 

to the model by using the BPMN resource class. We translate the BPMN that defines the IoT behavior into Callas 

bytecode [13], a non-platform-specific language that IoT devices with an available Callas virtual machine can execute. 

3. Modelling the behavior of IoT devices  

This section describes how we use the BPMN language to model IoT behavior within business processes, both at the 

same level of abstraction. It starts by presenting the use case scenario we choose to illustrate the application of our 

proposal.  

3.1 Use case scenario 

Fig. 1 presents our use case scenario, a simplified process for automatic irrigation control. The process includes three 

participants: the central process (named Irrigation) and two IoT devices, the IoT irrigation device and the IoT read 

rainfall device. The behavior of each participant is modelled in separated pools.  

The IoT read rainfall device, periodically, wakes up. Its process starts by reading the rainfall sensor, and only sends a 

message to the IoT irrigation device if it is not raining; otherwise, it stops. When the IoT irrigation device receives the 

message from the IoT read rainfall device, it starts the irrigation by activating an actuator, which lasts for a pre-defined 

period. Upon finishing the irrigation, the IoT irrigation device reads the flowmeter sensor to make sure it is sealed. If 

water still flows, it sends an alert to the central process. This way, the central process receives a notification when the 

IoT irrigation device detects a water leek that needs human intervention to be fixed. 

This simplified process omits a lot of details, such as the functionalities to change both timers (the irrigation interval 

and duration), for instance. 



Using BPMN to model Internet of Things behavior within business process

 

 

 

 

International Journal of Information Systems and Project Management, Vol. 5, No. 4, 2017, 39-51 

◄ 43 ► 

 
Fig. 1.  BPMN use case scenario 

3.2 Using BPMN to model the behavior of IoT devices 

To model all the business process, including the behavior of IoT devices, we only use standard BPMN elements. BPMN 

already provides the concepts to define the behavior of various participants, by using different pools, as well as the 

interaction amongst participants, through collaboration diagrams. This approach is illustrated making use of our use 

case scenario described in the previous subsection. 

We select a subset of BPMN to model the behavior of IoT devices, avoiding the use of two different meta models. The 

selection of the subset considers two main factors: 

 To model the behavior of IoT devices, business modelers do not need all BPMN elements, as stated by Caracas 

[9]. This way, we include in our subset the BPMN elements that Caracas use to model the IoT programming 

patterns, and 

 Callas already considers general IoT devices limitations, for instance, it does not support parallel tasks. In 

addition, it is a block-structured language, consequently, it also does not support unstructured control flow, 

unlike BPMN, which allows gateways to loop back and forward. Fig. 2 illustrates an example of a flow control 

that we do not support in IoT behavior definitions, since there is no way to represent the flow from Task B to 

Task A. 

The BPMN subset includes the following elements: 

 Flow control: events (message received, timers, and the start and end events), activities (script task, send task, 

and receive task), and gateways (exclusive gateway and merging exclusive gateway); 

 Connecting objects: sequence flow, message flow, and data associations; and 

 Data: data objects. 
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We use script tasks to define the tasks that corresponds to invocations of hardware functionalities of IoT devices. For 

instance, in our use case example, IoT read rainfall device has a rainfall sensor, and we use the script task Read rainfall 
to model the sensor data acquisition. In a similar way, within the process of the IoT irrigation device, we also use a 

script task (named Start irrigation)  to model the activation of the actuator that starts the irrigation. 

The BPMN Resource class and the BPMN Performer class are used to define the IoT device that will execute the 

processes, avoiding the integration of this information into BPMN models in a non-standard way. The Resource class is 

used to specify resources (i.e., IoT devices) that can be referenced by processes, whereas the Performer class defines the 

resource that will perform the processes. Fig. 3 presents a simplified example based on our use case scenario, which can 

be reused in other business processes. It includes the definition of the resource named IoTdevice with three parameters: 

deviceType, address, and operations. The performer definition exemplifies the way we apply the deviceType resource 

parameter in queries for resource assignment. We use the operations parameter to access to the list of the hardware 

functionalities of the IoT device and their signatures, i.e., the name, its return type, and the type of its parameters. 

<resource id="IoTdevice" name="IoTdevice"> 
   <resourceParameter id="deviceType" name="deviceType" type="xs:string"/> 

   <resourceParameter id="address" name="address" type="xs:string"/> 

   <resourceParameter id="operations" name="operations" type="ns1.xsd:tOperations"/> 
</resource> 

… 

<performer id="performer" name="performer"> 
     <resourceRef>IoTdevice<resourceRef> 

     <resourceParameterBinding parameterRef="deviceType"> 

       <formalExpression>IoT irrigation device<formalExpression> 
     </resourceParameterBinding> 

</performer> 

Fig. 3. Example of using the BPMN resource class and the BPMN performer class  

4. Implementing the behavior of IoT devices  

The implementation phase includes the translation of BPMN processes into Callas bytecode (the executable program for 

IoT devices), and how to deploy and execute it in IoT devices. 

4.1 Translating BPMN to Callas code 

Unlike related work approaches that use platform-specific code to specify the behavior of IoT devices, we translate it 

into Callas bytecode [13]. By choosing the Callas programming language, we take advantage of some of its 

characteristics and functionalities specifically tailored to address IoT devices. For instance, Callas takes, as a pattern, 

the path followed by the Java programming language, and proposes a virtual machine for IoT devices that abstracts 

hardware specificities and makes executable code portable among IoT devices from different manufacturers. The Callas 

language is founded on a well-established formal semantics and, along with its virtual machine, statically guaranties 

Fig. 2. Example of a non-block control flow structure 



Using BPMN to model Internet of Things behavior within business process

 

 

 

 

International Journal of Information Systems and Project Management, Vol. 5, No. 4, 2017, 39-51 

◄ 45 ► 

that well-typed programs are free from certain runtime errors (type-safety). Moreover, the Callas virtual machine is 

sound, that is, its semantics corresponds to that of the Callas language. It includes domain-specific IoT operations, such 

as for sending and for receiving messages from the network. These Callas operations are supported directly at the Callas 

virtual machine level, and may have different implementations depending on the hardware where it is deployed. 

Currently the Callas virtual machine is available for SunSpot, TinyOS, Arduino, VisualSense, and Unix platforms 

(more information can be found in the Callas website http://www.dcc.fc.up.pt/callas/). Other interactions with the 

hardware of IoT devices are performed by calling external functions of the language. This typically corresponds to 

operating system calls or to direct implementations (on the bare metal) of functions on the Callas virtual machine. The 

operations made available by each kind of device is described by a type in the Callas language, allowing the compiler to 

verify if the source code is adequate to run on a specific target device. A distinguished feature of the language is its 

ability to deploy executable code, which we use to install the code in IoT devices, remotely. We also consider this 

feature as the first step to support ad-hoc changes [14] in IoT business process parts. 

Fig. 4 presents the Callas source code that implements the behavior of the IoT devices of our case study. The left 

column has the source code that corresponds to the behavior of the IoT read rainfall device, whereas the right column 

has the source code that corresponds to the behavior of the IoT irrigation device. Programs start by declaring two 

module types: Nil, an empty module type used to represent void function returns; and a second module that defines the 

message signatures that flow on IoT devices.  

The implementation of the IoT_read_rainfall_device spans from line 9 to line 17. Each function is implemented using 

the def construct. The checkIrrigation function reads the rainfall sensor (using the readRainfall external function) and 

binds it to the isRaining variable. Then, in case it is not raining, the function continues by sending a message to start the 

irrigation (send startIrrigation). The main program (lines 19–24) loads the module into the device’s memory and installs 

a timer to call checkIrrigation every day. 

Within the implementation of the IoT_irrigation_device, upon receiving the startIrrigation message, it invokes the 

startIrrigation external function. The system irrigates for 20 minutes, stops by calling the stopIrrigation function, and 

checks whether the water valve is sealed. It alerts the central process in case there is a water leak (send 

waterLeakAlert). 

defmodule Nil:  1 
  pass  2 

  3 

defmodule IoT_irrigation_system : 4 
   Nil startIrrigation ()  5 

   Nil waterLeakAlert ()  6 

  7 
# declare module IoT_read_rainfall_device 8 

module m of IoT_irrigation_system: 9 

  def checkIrrigation (self):  10 
    isRaining = extern readRainfall () 11 

    if not isRaining :  12 

         send startIrrigation ()   13 
  def startIrrigation (self):  14 

    pass  15 

  def waterLeakAlert (self):  16 
    pass  17 

  18 

mem = load # load the device memory 19 
newMem = mem || m  # update with Sampler module m 20 

store newMem               # replace the device memory 21 

  22 
# invoke tasks every day  23 

checkIrrigation () every 24∗60∗60∗1000 24 

defmodule Nil:  25 
  pass  26 

  27 

defmodule IoT_irrigation_system: 28 
   Nil startIrrigation ()  29 

   Nil waterLeakAlert ()  30 

  31 
# declare module IoT_irrigation_device 32 

module m of IoT_irrigation_system: 33 

  def startIrrigation (self):   34 
      extern startIrrigation ()  35 

      sleep (20∗60∗1000)  36 
      extern stopIrrigation ()  37 

      curFlowmeter = extern readFlowmeter () 38 

      if curFlowmeter > 0  39 
         send waterLeakAlert () 40 

  def waterLeakAlert (self):  41 

    pass  42 
  43 

mem = load # load the device memory 44 

newMem = mem || m  # update with Sampler module m 45 

store newMem               # replace the device memory 46 

Fig. 4. The Callas code of the use case scenario 

http://www.dcc.fc.up.pt/callas/
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The translation from BPMN to Callas is divided into three phases: (1) parse of BPMN XML files; (2) syntactic and 

semantic validations of BPMN processes; and (3) translation into Callas. 

The parsing phase takes the BPMN XML file and creates an abstract syntax tree (AST) representation. At this phase, we 

rule out programs with constructs that are not compliant with the BPMN subset we define for modelling IoT devices’ 

behavior. 

The second phase traverses the AST multiple times for validations: it verifies that (a) the control flow is plausible for 

being translated into a block-structured language, and that (b) the domain-specific script tasks are valid. The former 

checks that tasks and events only have one input and one output sequence flow and that every possible control flow path 

from an outgoing exclusive gateway arrives at the corresponding incoming exclusive gateway. Otherwise, it denotes a 

control flow only possible to represent using a goto statement (absent in Callas). This validation is challenging, since 

we need to figure out the correspondence between the outgoing and the incoming exclusive gateways, and that control 

flow may include various exclusive gateways (corresponding to nested if statements in structured languages). As for the 

latter, valid domain-specific script tasks have well-known names fixed in advance, associated with information specific 

per each task. 

Semantic validation checks that the domain-specific tasks are used correctly on what concerns the types of the data 

objects being used and that these types are in conformance with the domain-specific task signatures (also provided in 

advance). 

The translation from the AST into Callas proceeds as follows: 

 Event elements: (a) message received start events are translated into function calls and the process triggered by 

these events are translated into function definitions. We figure out the function signature from the types of the 

values in the message. The function name can be set arbitrarily, since the whole interaction process is going to be 

generated automatically at compile time and set for both participants (the BPMN engine or the IoT devices). In 

Fig. 4 we do not use arbitrarily function names for the sake of legibility. Upon message reception, the Callas 

virtual machine takes the responsibility of invoking the correct message handler function. For instance, upon 

reception of an irrigation message by the IoT device, the Callas virtual machine dispatches it to the 

startIrrigation function that implements the behavior of the IoT irrigation device; (b) There are two distinct 

behaviors for business process timers, depending whether they are attached to starting events or used in the 

middle of processes to model the passing of time. The former are directly supported by a Callas timer that 

invokes a function encoding the timer behavior (vide line 24, Fig. 4). The latter, is naturally implemented using 

the Callas delay function; (c) the end event is twofold: when it happens inside a process, it is translated into a 

return statement inside the function that models the process; when it marks the end of the top-level process there 

are multiple ways to interpret it. The simplest is just to ignore the event, since we can think of a IoT program as a 

never-ending program, always ready to handle new requests. The other extreme is to end the Callas virtual 

machine, but then we need to get explicit access to the IoT device hardware to reset it, or put in place an 

additional software procedure to reset the IoT devices remotely. We have decided to follow the former option 

and simply ignore the end event; 

 Activity elements: send and receive tasks have a direct correspondence with the send and receive constructs 

from the language. The script tasks we support are predefined and implemented as part of a Callas library for the 

BPMN subset. As an example, the Read rainfall script tasks is translated into a call to the hardware functionality 

named readRainfall (vide line 11, Fig. 4); 

 Gateway elements: Exclusive gateways are represented by if statements. In case the gateway has more than two 

alternatives, it is translated into a series of nested if−else statements. Merging exclusive gateways are ignored 

during the translation process, since their behavior is captured by the Callas sequential composition statement. It 

is just used during semantic validation as described above; 
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 Connecting object elements: sequence flows are modelled by Callas control flow mechanisms, which is 

sequential composition, branching, looping, and function calls. The validation phase guarantees that the IoT 

BPMN model can be represented by these control flow primitives. Message flows are initiated with a send task, 

concluded with a receive task, and the flow itself is supported by the underlying data layer of the communication 

protocol stack of IoT devices; 

 Data elements: data objects and their associations are modelled by Callas program variables that store objects 

and, when used in expressions, represent data associations, capturing the data flows specified at the BMPN 

model. 

During the whole translation procedure, we keep track of each BPMN element identification, defined in the XML 

model file. We use them to map the errors we unveil during the validation and the translation phases, and report them to 

modelers in the BPMN design tool context. 

4.2 Deployment and execution 

Deployment and execution phases include the installation of Callas bytecode in IoT devices as well as the creation of 

the web services to support the communication between the process execution engine (jBPMN) and IoT devices. 

The steps our deployment algorithm performs are the following: 

 Generate the Callas code and deploy it to the IoT device by invoking the install code service. For that, we 

provide the target IoT device identification taken from the IoT device database, by using a query based on the 

parameters of the resource, and the bytecode produced during the Callas compilation; 

 Remove IoT pools from the BPMN model file, since this behavior is going to be performed by IoT devices, 

instead of the jBPM server; 

 Update the BPMN model file by setting send message tasks (or throw events) that target the IoT pool to use IoT 

web services, providing its address; and 

 For each receive message tasks (or catch event) that initiates at an IoT pool, we take its address and pass it to the 

IoT devices so they can deliver messages using the jBPM RESTful API. 

4.3 Prototype 

In our prototype, we use the Eclipse IDE [32] and the jBPM [33], a BPMN server from RedHat. Our irrigation use case 

is composed of two types of components: the IoT devices and the application. For the IoT side, the one installed in the 

garden, we devised a hardware board for controlling irrigation. The board uses the ATmega644PA processor from 

Atmel corporation. We adapted the Callas virtual machine for this processor and programmed a firmware that controls 

the garden’s irrigation following a programmable schedule. The devices address directly jBPM via its RESTful API; 

likewise, the application can address each IoT device using its service address. The application includes several 

irrigation related processes modeled and deployed with our proposal. We currently have the prototype deployed at 

Avenida da Liberdade in collaboration with Lisbon city council, where we control four electrovalves managing a total 

of 40 sprinklers. The project is running with success for three months. 

5. Conclusion and future work 

The IoT opens an opportunity to create a new generation of business processes that can benefit from IoT ubiquity, 

taking advantage of their computational power, networking, and sensing capabilities. IoT devices can even execute 

parts of the business logic. 

The work we present in this paper allows modelers to define IoT behavior within business process and with the same 

level of abstraction, by only using standard BPMN. By translating BPMN, the IoT behavior part, into Callas, we 

generate neutral-platform portable code, which can also be sent to IoT devices remotely. Our approach opens new 

opportunities to bring together process modelling and information and functionalities provided by IoT devices. 
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Modelers do not need to cope with IoT specificities, and use BPMN without any extensions; Callas allows to abstract 

from the hardware, making the generated code able to run on different devices, if these devices offer the required 

functionalities. Moreover, the Callas ability for remote reprogramming facilitates code deployment and adds support for 

dynamic ad- hoc business process changes. 

As future work, we want to support the automatic decomposition of business process to determine which process parts 

can be executed by IoT devices. 

In addition, this decentralized approach brings new challenges considering security, as we need to assure confidentiality 

and authenticity between central process and IoT devices as well as between IoT devices. 
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